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Abstract
The formal asymptotic expansion in ε of the eigenvalues and eigenfunctions
of a family of one-dimensional Hamiltonians −d2/dx2 + V (x) + 1/εW(x/ε)

is considered in the limit ε → 0, using the technique of multiple scales. For
sufficiently localized short-range potentials W the O(ε0) approximation can
be found by the usual replacement of the function W by a δ-type distribution.
A simple analytical formula is found which expresses the first-order correction
in terms of the zeroth-order wavefunction and some moments of the function W .

PACS numbers: 03.65.Ca, 03.65.Ge, 02.30.Mv, 31.15.Md

1. Introduction

In 1931 Kronig and Penney [1] first modelled the potential seen by the electrons in a metal
by a train of δ-functions. They were able to determine the exact energy eigenvalues of this
model and thus exemplified the appearance of the band structure in metals. Later it was
recognized that quite generally the Schrödinger equation for systems with only a discrete
number of point potentials can be solved analytically [2] as they merely correspond to some
alternative self-adjoint extensions of the free-particle Hamiltonian. In most textbooks on
quantum mechanics, it is shown that δ-functions may be used to approximate short-range
potentials provided that the other length scales in the system are large compared to the width
of the potentials. The approximation of a point interaction by a limit of a family of some
regular short-range potentials is called regularization. For other point interactions or in more
than one dimension, it is not straightforward to express these as a limit of smooth potentials;
for example, for the so-called δ′-potential [3–5] it is still a topic of actual research. In [5]
approximations of δ′ by local potentials are constructed and proved to converge (in the norm
resolvent sense).
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In the following, we will discuss in some sense the inverse question, as to whether
it is possible to describe a short-range potential perturbation theoretically, starting from a
δ-function in 0th order and treating the width of the potential as the small parameter. We
are especially interested in deriving some simple expressions for the lowest order corrections
to isolated energy eigenvalues and wavefunctions which are due to the finite width of the
potential.

We will restrict ourselves to the study of the one-dimensional Hamiltonians

H = − d2

dx2
+ V (x) +

1

ε
W(x/ε) (1)

where ε is a small parameter characterizing the width of the short-range potential 1/εW(x/ε),
which in the limit ε → 0 shall converge to a δ-function. Hence W(x) ∈ L1(R). This condition
has to be sharpened when higher order corrections are considered. In the following, we shall
assume that exp(a|x|)W(x) ∈ L1(R) for some a > 0, as any long-range part may be included
into the function V (x), which we assume to be sufficiently well behaved, i.e., C∞. An
example of an admissible function W is a Gaussian W(x/ε) = exp(−x2/ε2). The functions
in the range of definition of the operator H shall fulfil homogeneous boundary conditions on
the boundary points xA < 0 and xB > 0. For the special case that V (x) = 0 and range of
definition D ⊂ L2(R), the ground state asymptotics has been carefully studied by Albeverio
et al [2, 6], which made use of the fact that in the absence of V the Hamiltonian (1) is unitarily
equivalent to 1/ε2(−d2/dx2 + εW(x)), whose ground state asymptotics is known.

It is not possible to simply expand W(x/ε) in a power series in ε, as this function is
essentially divergent at ε = 0. Another possibility would be a moment expansion for the
function W . If we define a functional Q which acts on functions F(x), which are sufficiently
smooth and localized (for a precise characterization of the domain cf [7, 8]), as

Q : F(x) → 1/ε

∫
W(x/ε)F (x) dx (2)

we may replace the integral kernel W(x/ε) by its moment expansion

1

ε
W(x/ε) ∼ 1

ε

∞∑
j=0

(−1)j

j !
〈W(y)yj 〉0δ

(j)(y) =
∞∑

j=0

(−ε)j

j !
〈W(y)〉j δ(j)(x), (3)

with y = x/ε and the definition of the nth moment 〈f 〉n = ∫ ∞
−∞ dyf (y)yn. In the last step,

we used the relations

εj+1δ(j)(x) = δ(j)(y), (4)

which can easily be derived from the fact that

θ(x) = θ(y), (5)

and from d/dy = εd/dx. Here θ(x) is Heaviside’s step function. We cannot use this
moment expansion to construct a perturbation expansion for the Schrödinger equation linked
with Hamiltonian (1), as the solutions of the zeroth-order equation have discontinuous first
derivative and thus are not even in the space of test functions for tempered distributions3.

Nevertheless some kind of moment expansion appears still desirable. As we have (at
least) two well-separated length scales in the problem—one ∼ 1 (=̂ε0), the scale of the
0th order problem, and the other ∼ε, the width of the narrow potential—it appears promising

3 Colombeau [9, 10] has developed a mathematical formalism, the ‘generalized function algebra’, which allows one
to treat products of distributions and which has been applied successfully to physical problems [11, 12]. It might
be that the perturbation expansion in terms of moments can be consistently formulated in this method. However, in
practice, regularizations similar to those performed in this paper have to be performed in that method, too.
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to try a multiple scales expansion [13, 14]. While quite popular in engineering sciences, this
method is only rarely used in quantum mechanics [15] and then mostly in the time domain (cf
[16] for an application to chemical kinetics). A notable exception is the article by Hagedorn
[17], which perhaps is conceptually closest to our analysis. Hagedorn studies the Born–
Oppenheimer expansion with multiple scales techniques. He introduces two variables x and y

to separate adiabatic from semiclassical behaviour. He uses operators that change dependence
on the variable x into dependence on y to be able to treat x and y as if they were independent
variables and so to provide a uniqueness criterion in the expansion.

The main new idea in the following will be to make extensive use of equations (4) and (5)
to shift divergencies between the two length scales and thus avoid secular contributions. We
shall call this shifting procedure ‘balancing’.

The objective of the paper is twofold. On the one hand, we want to demonstrate that the
method of multiple scales can be used to calculate advantageously perturbational corrections
due to the finite range of the interactions. The method may be useful in a much broader range
of quantum mechanical problems than the one studied. On the other hand, we will derive in
section 2 explicit formulae for the first-order correction in ε to the energy and wavefunction
which are new in this generality. The main results are equations (13), (26) and (29), which
express the first-order corrections in terms of moments (24) of the function W and the zeroth-
order wavefunction. The application of these final formulae does not require that the reader go
through the derivation; only the zeroth-order wavefunction and some moments of the function
W have to be calculated.

For the special case that the first-order correction vanishes we will also derive the second-
order correction. In section 3 we show that these corrections coincide with exact results for
some model systems that allow analytic solution.

2. Multiple scales analysis

Let x = εy. With d
dx

= ∂
∂x

+ 1
ε

∂
∂y

, we rewrite the Hamiltonian (1) as

H = − 1

ε2

∂2

∂y2
− 2

ε

∂2

∂y∂x
− ∂2

∂x2
+ V (x) +

1

ε
W(y). (6)

We expand the eigenfunction and energy in series in ε,

ψ =
∑

i

εiψi and E =
∑

i

εiEi. (7)

As in the limit ε → 0 the potential 1/εW(x/ε) converges to a δ-function, we know that the
expansion for both E and ψ generically starts with the term O(ε0). Only if 〈W 〉0 = 0, will
the zeroth-order term be absent. If 〈W 〉0 	= 0, we assume that 〈W 〉1 = 0. This can always be
achieved by an appropriate choice of the origin.

From now on, we treat the variables x and y as independent ones, but we will still make
use of the identities (4) and (5) to avoid the appearance of either secular terms or terms that
would violate the boundary conditions. Secular terms are contributions to ψ which change
order on a replacement of x/ε by y or y by x/ε. Typical secular terms are powers of x or y.
We will see that we can combine the boundary condition and the requirement that no secular
terms shall appear in the single statement that

ψi(x, y) ∼ fi(x) + O(ε∞) (8)

in the limit y → ±∞ with fi(x) independent of the sign of y. This is consistent with the
view that functions of the variable y should make only a local contribution on the length scale
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O(ε) and decay exponentially with increasing y; we may speak of an inner expansion. On a
length scale O(ε0), the terms that contribute to that outer expansion will depend only on x.

If we insert expressions (6) and (7) for H, ψ and E into the Schrödinger equation
Hψ = Eψ and collect like orders of ε, we get the perturbation expansion which begins
with terms of order ε−2.

Second order:

− 1

ε2

∂2ψ0

∂y2
= 0. (9)

The general solution of this equation is a function linear in y with arbitrary dependence on x.
To be non-secular, ψ0 has to be a function of x only, ψ0(x, y) = ψ0(x). The dependence on x
will be determined from the higher order equations. The function ψ0(x) will have to fulfil the
same boundary conditions as ψ(x).

First order:

1

ε

{
−∂2ψ1

∂y2
+ W(y)ψ0

}
= 0. (10)

When the zeroth moment 〈W(y)〉0 does not vanish, integration over y leads to secular terms,
which increase ∝ |y| for large y. To avoid these terms, we add −1/ε 〈W 〉0δ(y)ψ0(x) to the
first-order equation (10) and, as a counterbalance, 〈W 〉0δ(x)ψ0(x) which is of zeroth order in
ε and will show up in equation (14). This is the ‘balancing’ procedure which we shall use
excessively when treating higher orders.

Integration with respect to y would lead to

ψ1 =
∫ (2)y

[W − 〈W 〉0δ(y)]ψ0(x) + f1(x). (11)

Here we use the notation
∫ (n)y[f (y)] = ∫ y dy ′ ∫ y ′

−∞ dy ′′ · · · ∫ y(n−1)

−∞ dy(n)f (y(n)) with the
constant of integration chosen in such a way that the result does not contain a constant
term. While it is clear that we had to subtract the zeroth moment 〈W 〉0δ(x) from W(x) to
avoid secular terms we will now argue that it is also necessary to subtract the first moment4

−〈W 〉1δ
′(x) although a W with nonzero first moment does not lead to secular terms as such.

Instead integration over y gives a y-dependent term which has a sigmoid form when the first
moment 〈W(y)〉1 is non-vanishing. Specifically (and after replacing y by x/ε) we would get

ψ1(xA/B) ∼ − 1
2 〈W 〉1 sgn(xA/B)ψ0(xA/B) + f1(xA/B) + O(ε∞). (12)

But later we will see that not only ψ0 and ψ1, but also f1, will have to fulfil asymptotically the
same homogeneous boundary conditions, which is not possible5. Therefore we will subtract
the 1st moment −1/ε 〈W 〉1δ

′(y)ψ0(x) from equation (10) and, as a counterbalance, add
−ε〈W 〉1δ

′(x)ψ0(x), which will show up in the first-order equation (22).
We find

ψ1 =
∫ (2)y

[W − 〈W 〉0δ(y) + 〈W 〉1δ
′(y)]ψ0(x) + f1(x) =

∫ (2)y

[W̃ ]ψ0(x) + f1(x). (13)

Here we use the abbreviation f̃ (y) = f (y) − 〈f 〉0δ(y) + 〈f 〉1δ
′(y).

Zeroth order:

−∂2ψ2

∂y2
− 2

∂2ψ1

∂y∂x
+ W(y)ψ1 − ∂2ψ0

∂x2
+ V (x)ψ0 + 〈W 〉0δ(x)ψ0(x) = E0ψ0. (14)

4 Due to our definition of the potential W this can only happen if 〈W 〉0 = 0. The reasoning also applies to the
equations for the higher order corrections where the corresponding moments generically will not vanish.
5 This can easily be seen, e.g., for the special boundary conditions ψ0/1(xA) = ψ0/1(xB) and f1(xA) = f1(xB).
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Here, a new class of inhomogeneous terms appears, which may inject secular terms into the
perturbation series: those terms, which depend only on x and not on y, are solutions of the
homogeneous equation and would therefore give rise to solutions that increase linearly with
y. They cannot be cancelled by subtraction of some δ-functions and hence have to vanish
identically. This condition determines ψ0 completely,

−∂2ψ0

∂x2
+ V (x)ψ0 + 〈W 〉0δ(x)ψ0(x) = E0ψ0. (15)

This kind of singular Schrödinger equation is discussed in any text book on quantum
mechanics. A rigorous discussion can be found in [18, 19]. Thus we have recovered the
result that the function 1/εW(x/ε) converges to 〈W 〉0 times a δ-function. The function ψ0(x)

generically will have a discontinuous derivative at x = 0, so that we cannot allow for a
δ-function when balancing. This is the reason why we chose 〈W 〉1 = 0 if 〈W 〉0 	= 0. In the
special case 〈W 〉0 = 0, the first moment 〈W 〉1 will in general be non-vanishing. However,
ψ ′

0(x) is continuous in that case, so that the balancing term containing a δ-function is well
defined6.

The equation that determines ψ2 now reads

∂2ψ2

∂y2
= −2

∂2ψ1

∂y∂x
+ W(y)ψ1. (16)

This equation is still not in its final form but we will have to modify it, subtracting δ-functions
in y to remove secular contributions.

Let us first discuss the last term on the right-hand side: we add (−〈W 〉0δ(y) + 〈W 〉1δ
′(y))

f1(x) and ε〈W 〉0δ(x)f1(x) and −ε2〈W 〉1δ
′(x)f1(x) which will show up in equations (22) and

(30), respectively. Furthermore we add(
−

〈
W

∫ (2)y

[W̃ ]

〉
0

δ(y) +

〈
W

∫ (2)y

[W̃ ]

〉
1

δ′(y)

)
ψ0 (17)

to the zeroth order and balance it again with terms which are of first and second order in ε.
Balancing the term −2 ∂2ψ1

∂y∂x
is more tricky. This term does induce secular terms in ψ2 and

is discontinuous in x. We shall first remove the discontinuity in x, as it impedes introduction
of the δ-functions necessary to remove secular terms.

We split ψ0(x) into a part with continuous first derivative and a part with discontinuous
derivative,

ψ0(x) = 1
2 〈W 〉0ψ0(0)G0(x)|x| + F0(x). (18)

Here F0(x) and G0(x) are C1 with F0(0) = ψ0(0), G0(0) = 1 and G′
0(0) = 0. Furthermore

we choose G(xA/B) = G′(xA/B) = 0. While we still have great freedom in the choice of
G0(x), the function F0(x) results as a solution of{

− ∂2

∂x2
+ V (x) − E0

}
F0 = 1

2
〈W 〉0ψ0(0)(E0 − V (x))G0(x)|x| (19)

with the same boundary conditions as ψ0(x). As G0(x) is continuous, so F ′′
0 (x) will be,

which will prove important for balancing. Using relation (5), we get rid of the terms
discontinuous in x: we subtract the discontinuous part −〈W 〉0G0(x) sgn(x)

∫ y[W̃ ]ψ0(0)

6 In [3, 4] it is shown that the δ′-point interaction cannot be approximated by a potential with vanishing average. This
point interaction is characterized by the fact that its eigenfunctions are discontinuous limγ→0(ψ(|γ |) − ψ(−|γ |)) ∝
ψ ′(0). There is no contradiction with the appearance of a δ′-distribution in equations (13), (29) determining the
first-order corrections in the case 〈W 〉0 = 0. Especially ψ0(x) will remain continuous. After replacement of y by
x/ε it can be seen that ψ1(x) is continuous, too.
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and balance it in the same order by −〈W 〉0G0(x) sgn(y)
∫ y[W̃ ]ψ0(0). All the remaining

terms are C1 in x so that we have no problems in balancing them. To that end we subtract
(−〈W 〉0

〈
sgn(y)

∫ y[W̃ ]
〉
1δ(y) + 〈W 〉0

〈
sgn(y)

∫ y[W̃ ]
〉
1δ

′(y))ψ0(0) and balance it with terms
−ε 〈W 〉 〈

sgn(y)
∫ y[W̃ ]

〉
0δ(x)ψ0(0) and ε2 〈W 〉〈sgn(y)

∫ y[W̃ ]
〉
1δ

′(x)ψ0(0).

From the term −2
∫ y[W̃ ]F ′

0(x)
∫ (3)y[W̃ ] we subtract −2

〈∫ (2)y[W̃ ]
〉
δ′(y)F ′

0(x) and balance

it by adding −2ε2
〈∫ (2)y[W̃ ]

〉
δ′(x)F ′

0(x).
Hence the final equation for ψ2, is

∂2ψ2

∂y2
= −2

∫ y

[W̃ ]F ′
0(x) − 〈W 〉0

˜(
sgn(y)

∫ y

[W̃ ]

)
ψ0(0)G0(x)

+ 2

〈∫ (2)y

[W̃ ]

〉
δ′(y)F ′

0(x) +
˜

W

∫ (2)y

[W̃ ]ψ0(x) + W̃f1(x). (20)

We find

ψ2 =
∫ (2)y


 ˜

W

∫ (2)y

[W̃ ]


 ψ0(x) − 2

∫ y


 ˜∫ (2)y

[W̃ ]


 F ′

0(x) +

〈∫ (2)y

[W̃ ]

〉
F ′

0(x)

−〈W 〉0

∫ (2)y
[

˜
sgn(y)

∫ y

[W̃ ]

]
ψ0(0)G0(x) +

∫ (2)y

[W̃ ]f1(x) + f2(x). (21)

First order:

ε

[
−∂2ψ3

∂y2
− 2

∂2ψ2

∂y∂x
+ W(y)ψ2 +

(〈
W

∫ (2)y

[W̃ ]

〉
0

− 〈W 〉0

〈
sgn(y)

∫ y

[W̃ ]

〉
0

−〈W 〉0

∫ 2y

[W̃ ]
∣∣∣
y=0

)
δ(x)ψ0 − 〈W 〉1δ

′(x)ψ0 − ∂2ψ1

∂x2
+ V (x)ψ1

+ 〈W 〉0δ(x)ψ1(x)

]
= ε(E0ψ1 + E1ψ0). (22)

We have added ε〈W 〉0
∫ 2y[W̃ ]δ(x)ψ0 in the third line and subtracted ε〈W 〉0∫ 2y[W̃ ]

∣∣
y=0δ(x)ψ0 in the second. Both terms are easily seen to balance each other by replacing

δ(x) by 1/εδ(y). This balancing is made unique by demanding that no terms dependent on
y and containing δ(x) remain at the same time, as they would lead to a singular ψ3. The
part of ψ1 which is proportional to ψ0 solves the homogeneous equation in the third line.
Hence the terms on the second and third line will be independent of y and we are left with an
inhomogeneous equation for f1(x)

−∂2f1

∂x2
+ V (x)f1 + 〈W 〉0δ(x)f1(x) − E0f1 = (E1 − Bδ(x) + 〈W 〉1δ

′(x))ψ0(x), (23)

with

B =
〈
W

∫ (2)y

[W̃ ]

〉
0

− 〈W 〉0

〈
sgn(y)

∫ y

[W̃ ]

〉
0

− 〈W 〉0

∫ 2y

[W̃ ]

∣∣∣∣∣
y=0

=
〈
W

∫ (2)y

[W̃ ]

〉
0

+ 〈W 〉0

∫ 2y

[W̃ ]

∣∣∣∣∣
y=0

. (24)
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Table 1. For a step pulse, a Gaussian and a Pöschl–Teller potential, the corresponding values of B̄

are given.

W(y) B̄

θ(y + 1/2) − θ(y − 1/2) 1/6
1/

√
π exp(−y2) 0.398 942

1/2 cosh−2(y) 1/2

The inhomogeneous equation for f1 has a solution only if the inhomogeneity on the rhs is
orthogonal to the homogeneous solution ψ0(x). This condition determines E1. In the generic
case 〈W 〉0 	= 0 and 〈W 〉1 = 0 we find by partial integration

B = 1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dyW(x)|x − y|W(y) (25)

and

E1〈ψ0|ψ0〉 = Bψ2
0 (0). (26)

If we scale W → αW , the quantity B will be proportional to α2 whence we introduce
B̄ := B/〈W 〉2

0, which will depend only on the shape of the function W but not on its strength.
In the exceptional case 〈W 〉0 = 0 and 〈W 〉1 	= 0, the first-order energy correction will be

E1〈ψ0|ψ0〉 = 〈W 〉1ψ0(0)ψ ′
0(0). (27)

If we had not balanced the first moment already in −1st order, equation (23) would be identical
to the homogeneous equation (15) with E0 fixed, but with boundary conditions f1(xA/B) = 0.
In general, these boundary conditions are different from those for ψ0, ψ0(xA/B) = ψ(xA/B). In
that case equation (15) could not be solved. Thus we have a posteriori justified the balancing
of the first moment. This argumentation can be seen to hold also for higher order corrections.

The first-order correction to the wavefunction can easily be determined: the ansatz
f1(x) = g1(x)ψ0(x) gives

−∂2g1

∂x2
ψ0 − 2

∂g1

∂x

∂ψ0

∂x
= (E1 − Bδ(x) + 〈W 〉1δ

′(x))ψ0. (28)

A special solution is

f1(x) = −ψ0(x)

∫ x

0
dx ′ 1

ψ2
0 (x ′)

∫ x ′

0
dx ′′ψ2

0 (x ′′)(E1 − Bδ(x ′′) + 〈W 〉1δ
′(x ′′)). (29)

In table 1 the first-order corrections B̄ for a step pulse, a Gaussian and a Pöschl–Teller
potential are compared. It can be seen that on descending the table, the functions displayed
produce increasingly less accurate representations of the δ-function.

2.1. Higher orders and general structure of the perturbation expansion

We have shown how relations (5) and (4) can be used to systematically eliminate divergent or
secular terms from the equations. However, the complexity of the equations that determine
the higher order corrections increases rapidly.

While the moment expansion of the function W contains derivatives δ(n) of all orders, in
the perturbation series constructed only δ and δ′ will show up. The ultimate reason behind
this is the fact that we are studying a differential equation which is second order in y: if
f (x, y) is a function which falls off faster than any power of |y|, the same will hold true for



3864 F Dufey and S H Lin∫ y[f (x̃, y)] = ∫ y[f (x, y) − 〈f 〉0δ(y) + 〈f 〉1δ
′(y)] and

∫ (2)y[f (x̃, y)]. These are the only
kinds of integrals that have to be evaluated when the differential equation in any order are
solved.

There remains, however, one problem: when balancing, we generate terms of the form
δ(x)f (x, y) and δ′(x)f (x, y). For these terms to be well defined, the function f (x, y) has to
be C0 or even C1 respectively. While we can balance any discontinuities using relation (5), we
do not see a general mechanism to guarantee that the functions f (x, y) become C1 although
we were able to satisfy this condition individually in all equations up to O(ε).

The evaluation of the second-order correction to the energy is most interesting when the
first-order correction vanishes, which is seen to be the case when ψ(0) = 0. As an example,
we consider the bound states with vanishing angular momentum in a three-dimensional central
symmetric potential V (r). After the substitution ψ(r) = 1/rφ(r), the equation for φ(x) is
identical to equation (1) when we define V (−x) = V (x) and ψ(−x) = −ψ(x). Here, φ(r) is
the wavefunction of the system. The calculation of the perturbation series is much simplified
by δ(x)ψ(x) = 0, which also implies that F ′

0(x) = ψ ′
0(x).

Collecting terms second order in ε and concentrating on the contributions independent of
y, we find that the energy E2 can be determined from the equation

−∂2f2

∂x2
+ V (x)f2 − E0f2 = E2ψ0 + 2

〈∫ (2)y

[W̃ ]

〉
0

δ′(x)ψ ′
0. (30)

The inhomogeneous term appeared when we balanced the zeroth-order equation. Equation (30)
only has a solution when E2 = 2

〈∫ (2)y[W̃ ]
〉
0(ψ

′
0(0))2 (we assume ψ0 to be normalized). As can

be shown by partial integration, we can alternatively write E2 = 〈W 〉2(ψ
′
0(0))2. Apparently,

the non-vanishing correction of lowest order En is proportional to the lowest non-vanishing
moment Wn(y).

2.2. Multiple narrow potentials

It is easy to enlarge considerably the range of applicability of the results just derived to the
case that several spiked potentials are present, i.e., instead of 1/εW(x/ε), we will assume
a potential of the form 1/ε

∑
i Wi((x − xi)/ε). The zeroth-order approximation consists of

a train of δ-functions
∑

i〈Wi〉0δ(x − xi) with xi being the centre of gravity of the functions
Wi((x − xi)/ε). The first-order correction can then be evaluated as a sum of the first-order
energies or wavefunctions determined from equations (26) and (13), respectively, with ψ0(0)

replaced by ψ0(xi) and y replaced by yi = (x − xi)/ε.

3. Comparison with exactly solvable models

In the case V (x) = 0 and range of definition x ∈] − ∞,∞[, our expression for E1

coincides with the results of Albeverio et al. However, these did not calculate the
asymptotics of the wavefunction. For an attractive Pöschl–Teller potential 1/εW(x/ε) =
−1/(2ε)[cosh(x/ε)]−2, we know the ground state wavefunction in dependence of ε, so that
we can compare the approximation for the wavefunction. Also eigenenergies of the Pöschl–
Teller potential are known analytically and we can expand them into a series in ε. With
A = 1/(2ε)(

√
1 + 2ε − 1) = 1/2 − ε/4 + ε2/4 + O(ε3), we find

E = −A2 ∼ −1

4
+

ε

4
+ O(ε2). (31)

The ground state wavefunction is

ψ(x) = C
[
cosh

(x

ε

)]−εA

, (32)
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for which we can find asymptotic expressions. For |x| � ε (outer expansion) we find

ψ(x) ∼ C

(
1

2

)−εA

exp(−A|x|) = C

[
1 − |x|/2 + ε

(
|x|/4 +

ln 2

2

)
+ O(ε2)

]
, (33)

while for |x| ∼ O(ε) (inner expansion) we find

ψ(x) ∼ C{1 − ε/2 ln[cosh(x/ε)] + O(ε2)}. (34)

We may compare with the results of the preceding section. The normalized lowest order
wavefunction is ψ0(x) = 1/

√
2 exp(−|x|/2), so that ψ2

0 (0) = 1/2, thence the first-order
correction to the energy is εB̄〈W 〉2

0ψ
2
0 (0)/〈ψ0|ψ0〉 = ε/4, which coincides with equation (31).

Furthermore,

ψ0

∫ (2)y

[W̃ ] = C exp(−|x|/2)

[
−1

2
ln cosh

(x

ε

)
+

1

2

∣∣∣x
ε

∣∣∣] (35)

and

f1(x) = B̄

2
〈W 〉2

0|x|ψ0(x) = 1

4
|x|ψ0(x). (36)

so that

ψ(x) ∼ ψ0(x)

{
1 −

[
ε

1

2
ln cosh

(x

ε

)
− 1

2
|x|

]
+ ε

1

4
|x|

}
+ O(ε2)}∼C {1 − |x|/2

−
[
ε

1

2
ln cosh

(x

ε

)
− 1

2
|x|

]
+ ε

1

4
|x|

}
+ O(ε2)} for x ∼ O(ε). (37)

For x = O(ε0) the term in square brackets is ε/2 ln 2 + O(ε∞) so that the expansion (37)
reduces to the outer expansion (33). For x = O(ε) expression (37) reproduces also the inner
expansion (34). Therefore, the first-order correction is uniform.

As a check for other boundary conditions, which are not invariant under scaling, we
consider a step function W(y) = θ(y + 1/2) − θ(y − 1/2), and a box potential V (x) = 0
for |x| < 1, as the corresponding problem can be solved analytically. The eigenenergies
corresponding to symmetric eigenfunctions are determined as solutions of the equation

√
E cot[

√
E(ε/2 − 1)] =

√
1/ε − E tanh[

√
1/ε − Eε/2]. (38)

From the zeroth-order equation
√

E0 cot(
√

E0) = −1/2 we infer the zeroth-order
wavefunctions ψ0(x) = N sin{√E0(|x|−1)]} and ψ2

0 (0) = 4E0/(4E0 + 3). On the other hand,
equation (38) can be expanded into a series in ε from which we find E1 = 2E0/3(4E0 + 3) =
ψ2

0 (0)/6 and E2 = −E0
(−189+196E0 +1104E2

0 +960E3
0

)/
180(4E0 +3)3. With B = 1/6 for

the square potential, the expression for E1 coincides with formula (26). For large E0, E1 ∼ 1/6
and E2 ∼ 16/3E0. Hence the first- and second-order energy corrections become comparable
for ε = 1/(32E0). The expansion for the odd functions is even simpler and can be used to
check the correctness of the second-order result.

4. Conclusion

The aim of the paper was twofold. On the one hand, we have demonstrated that the technique
of multiple scales can be used with advantage to derive perturbational expansions for families
of Hamiltonians which contain short-range potentials. The perturbation parameter here is the
width ε of these potentials.

As was expected, the eigenenergies and eigenfunctions in lowest order are solutions of a
Schrödinger equation with a Hamiltonian in which the spiked potential is replaced by a Dirac
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δ-function. The solution of this Schrödinger equation is well known. We derived the lowest
order corrections to this result which are due to the nonzero extent of the spiked potentials.
The corrections to the wavefunction are uniform in x. One advantage of the method of
multiple scales is that it is not necessary to presuppose some special behaviour under scaling
transformations as is the case in related methods, especially the treatment of Albeverio et al
[2, 6]. Therefore, we could allow for families of Hamiltonians which contain additional
slowly varying potentials besides the spiked potentials. In the special case that these slowly
varying potentials were absent, our results reduce to the formulae found by Albeverio et al.
The method of multiple scales allowed us to separate the corrections to the wavefunction into
short-range contributions relevant on a scale ε and long-range contributions, which influence
the wavefunction on a scale ε0. Indeed, the long-range corrections, e.g., f1(x) are given
as solutions of inhomogeneous differential equations, like of equation (23), in which only
moments of the potential W occur in combination with some δ- or δ′-distribution. Hence the
method implements directly the idea of a moment expansion. However, this expansion turns
out to be much more complicated than the expansion (3), which stood at the beginning of our
considerations.

On the other hand, we applied the multiple scales technique to a concrete one-dimensional
family of Hamiltonians (1) with various spiked potentials from which we chose as examples,
potentials of rectangular shape or of Gaussian and Pöschl–Teller type. Simple formulae for the
first-order corrections to the eigenenergies and eigenfunctions were derived, namely formulae
(26), (25) and (11), (29), respectively. The results have been compared with some special
cases, for which the whole perturbation series can be derived by other methods.
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